仰望之脑域科技树第20章、ABC猜想
如果我们把d稍微放大一点点,放大成d的(1+e次方),那么虽然还是不能保证大过c,但却足以让反例从无限个变成有限个。
这就是abc猜想的表述了。abc猜想不但涉及加法(两个数之和),又包含乘法(质因子相乘),接着还模糊地带有点乘方(1+e次方),最坑爹的是还有反例存在。
因此,这个猜想的难度可想而知。
事实上,除了尚未解决的涉及多个数学分支的猜想界皇冠黎曼猜想以外,其他数论中的猜想,诸如哥德巴赫猜想、孪生素数猜想,以及已经解决的费马大定理,基本上都没有abc猜想重要。
这是为何呢?
首先,abc猜想对于数论研究者来说,是反直觉的。
历史上反直觉的却又被验证为正确的理论,数不胜数。
一旦反直觉的理论被证实是正确的,基本上都改变了科学发展的进程。
举一个简单的例子:牛顿力学的惯性定律,物体若不受外力就会保持目前的运动状态,这在17世纪无疑是一个重量级的思想炸弹。
物体不受力状态下当然会从运动变为停止,这是当时的普通人基于每天的经验得出的正常思想。
而实际上,这种想法,在任何一个于20世纪学习过初中物理、知道有种力叫摩擦力的人来看,都会显得过于幼稚。
但对于当时的人们来说,惯性定理的确是相当违反人类常识的!
abc猜想之于现在的数论研究者,就好比牛顿惯性定律之于十七世纪的普通人,更是违反数学上的常识。
这一常识就是:“a和b的质因子与它们之和的质因子,应该没有任何联系。”
原因之一就是,允许加法和乘法在代数上交互,会产生无限可能和不可解问题,比如关于丢番图方程统一方法论的希尔伯特。
但有了正确的工具,先把问题解决,将来有机会再完善这个工具,才是正确的方式。
他需要短时间出成果,确立自己在这个领域的学术能力。